Новости

Заказ решебника

Закажи решебник и скоро он будет на сайте

  • Положительные стороны участия в школьных олимпиадах
    Облегчение поступления в университет. Вы можете задать своему ребенку конечную цель всего учебного процесса, тем самым убедив его в необходимости хорошей учебы. Часто родители говорят своим детям, что если они будут плохо учиться, то не смогут приобрести хорошую профессию в будущем, и пойдут в дворники.
  • Особенности питания школьника
    Питание в школе должно быть хорошо организованным. Школьник должен быть обеспечен в столовой обедом и горячим завтраком. Интервал между первым и вторым приемом пищи не должен превышать четыре часа. Наиболее оптимальным вариантом должен быть завтрак ребенка дома, в школе же он съедает второй завтрак
  • Детская агрессия в школе и сложности в процессе обучения
    Между детской агрессией и трудностями в процессе обучения установлена определенная взаимосвязь. Каждый школьник хочет иметь в школе много друзей, иметь хорошую успеваемость и хорошие оценки. Когда это у ребенка не получается, он делает агрессивные поступки. Каждое поведение на что-то нацелено, имеет смысловую
  • Советы психологов родителям
    В любых олимпиадах и всевозможных конкурсах ребенок, прежде всего, самовыражается и самореализовывается. Родители обязательно должны поддерживать своего ребенка, если он увлечен интеллектуальными соревнованиями. Ребенку важно осознавать себя частью общества интеллектуалов, в котором царят сопернические настроения, и ребенок сравнивает свои достигнутые
  • Ребенок отказывается от приема пищи в столовой школы
    Разборчивому ребенку школьная еда может прийтись не по вкусу. Зачастую, это самая распространенная причина отказа школьника от еды. Все происходит от того, что меню в школе не учитывает вкусовые потребности каждого отдельного ребенка. В школе никто не будет исключать какой-либо продукт из питания отдельного ребенка дабы
  • Как родители относятся к школе
    Для того чтобы понять как родители относятся к школе, то важно для начала охарактеризовать современных родителей, возрастная категория которых весьма разнообразна. Не смотря на это большую часть из них составляют родители, которые относятся к поколению девяностых годов, которые отличаются тяжелым временем для всего населения.
  • Школьная форма
    Первые школьные сборы навсегда остаются в памяти каждого из нас. Родители начинают закупать всю необходимую канцелярию, начиная с августа. Главным школьным атрибутом является форма школьника. Наряд должен быть тщательно подобран, чтобы первоклассник чувствовал себя уверенно. Введение школьной формы обосновывается многими причинами.

Рефераты

Уважаемые школьники и студенты! 

Уже сейчас на сайте вы можете воспользоваться более чем 20 000 рефератами, докладами, шпаргалками, курсовыми и дипломными работами.Присылайте нам свои новые работы и мы их обязательно опубликуем. Давайте продолжим создавать нашу коллекцию рефератов вместе!!!

Вы согласны передать свой реферат (диплом, курсовую работу и т.п.), а также дальнейшие права на хранение,  и распространение данного документа администрации сервера "mcvouo.ru"?

Спасибо за ваш вклад в коллекцию!

Всего 19436 рефератов.

Найти

Экономико - математическое моделирование - (реферат)

Дата добавления: март 2006г.

    Экономико - математическое моделиpование
    ЗАДАЧА 1
    Условие задачи.

Задана следующая экономическая ситуация. Завод выпускает изделия двух типов А и В. При этом используется сырье четырех видов. Расход сырья каждого вида на изготовление еденицы продукции и запасы сырья заданы в таблице Изделия Сырье

    1 2 3 4
    А 2 1 0 2
    В 3 0 1 1
    Запасы сырья 21 4 6 10

Выпуск изделия А приносит 3 денежные еденицы, В - 2 денежные единицы. Составить план производства, обеспечивающий максимальную прибыль а) составьте матиматическую модель задачи;

    б) поясните смысл целевой функции и ограничении
    Решение:
    а) Математическая модель
    2x1+3x2 <=21
    x1 <=4
    x2+ <=6
    2x1+ x2 <=10
    x1 >=0
    x2 >=0

б) Суммарный расход каждого вида сырья на весь выпуск не должен превышать заданного ограничения.

Валовая реализация (сумма объемов реализации по каждому виду продукции в денежном выражении) должна стремиться при заданных условиях к максиму в) Решать будем симплекс методом преобразуем неравенства в равенства, для этого введем четыре дополнительные переменные

    2x1+3x2+ x3 =21
    x1 + x4 =4
    x2 +x5 =6
    2x1+x2+ x6 =10
    f=3x1+2x2+0*x3+0*x4+0*x5+0*x6 -> max
    перепишем в виде систем 0 уравнений
    0= 21-(2x1+3x2+x3)
    0= 4-( x1 + x4)
    0= 6-( x2+ х5)
    0=10-(2х1+х2+ х6)
    f=0-(-3x1-2x2-0*x3-0*x4-0*x5-0*x6)

Система уравнений может быть записана в виде векторного равенства 0=В - (А1х1+А2х2+А3х3+А4х4+А5х5+А6х6)

    В - свободные члены
    А1…А6 коэффициенты при переменных х1…х6
    Линейная форма имеет вид : f=c1x1+c2x2+c3x3+c4x4+c5x5+c6x6
    Векторы А3, А4, А5, А6 составляют базис
    Составляем первую симплекс таблицу

Базисный вектор Коэф. лин. формы с вектор св. член b b/a 3 A1 2 A2 0 A3 0 A4 0 A5 0 A6 А3 0 21 10, 5 2 3 1 0 0 0

    A4 0 4 4 1 0 0 1 0 0
    A5 0 6 0 0 1 0 0 1 0
    A6 0 10 5 2 1 0 0 0 1
    индексная строка fj-сj 0 -3 -2
    Решение: х1=0, х2=0, х3=21, х4=4, х5=6, х6=10
    f=0

Так как в индексной строке есть отрицательные элементы -решение не является оптимальным.

    A1 вводим в базис вместо вектора А4

Базисный вектор Коэф. лин. формы с вектор св. член b b/a 3 A1 2 A2 0 A3 0 A4 0 A5 0 A6 A3 0 13 4 1/3 0 3 1 -2 0 0

    A1 3 4 0 1 0 0 1 0 0
    А5 0 6 6 0 1 0 0 1 0
    A6 0 2 2 0 1 0 -2 0 1
    индексная строка fj-сj 0 -2 0 3 0 0
    Решение: х1=4, х2=0, х3=13, х4=0, х5=6, х6=2
    f=12

Так как в индексной строке есть отрицательные элементы -решение не является оптимальным.

    A2 вводим в базис вместо вектора А6

Базисный вектор Коэф. лин. формы с вектор св. член b b/a 8 A1 7 A2 6 A3 0 A4 0 A5 0 A6 A3 0 7 1 3/4 0 0 1 4 0 -3

    A1 3 4 4 1 0 0 1 0 0
    А5 0 4 2 0 0 0 2 1 -1
    A2 2 2 -1 0 1 0 -2 0 1
    индексная строка fj-сj 0 0 0 -1 0 2
    Решение: x1=4, x2=2; x3=7; x4=0; x5=4; x6=0
    f=12

Так как в индексной строке есть отрицательные элементы -решение не является оптимальным.

    A4 вводим в базис вместо вектора А3

Базисный вектор Коэф. лин. формы с вектор св. член b b/a 8 A1 7 A2 6 A3 0 A4 0 A5 0 A6 A4 0 1 3/4 0 0 1/4 1 0 - 3/4

    A1 3 2 1/4 1 0 - 1/4 0 0 3/4
    А5 0 1/2 0 0 - 1/2 0 1 1/4
    A2 2 5 1/2 0 1 1/2 0 0 -1 1/2
    индексная строка fj-сj 0 0 1/4 0 0 1 1/4
    Решение: x1=2, 25, x2=5, 5; x3=0; x4=1 3/4; x5=1/2; x6=0
    f=17, 75

В индексной строке нет отрицательных элементов, следовательно дальнейшее увеличение значения линейной формы невозможно мы получили оптимальную программу

Максимальная прибыль достигается при изготовлении первого вида продукции 2, 25 у. е. , а второго 5, 5 у. е.

Так как нам не было задано условие целочисленности, такие значения допустимы, например в качестве условных едениц - тысячи тонн.

    ЗАДАЧА 2
    Наити максимум функции F при заданных ограничениях
    F = x1+2x2 ->max
    3x1+x2 >=3 (1)
    3x1-x2 <=0 (2)
    x1-x2 >=3 (3)
    x1>=0 (4)
    x2>=0 (5)
    Решить графическим методом
    Решение

1. Из условия знакоположительности - первой допустимой областью решения является первая четверть декартовой системы координат 2. Построим области допустимых значений, для этого построим линии для каждого из уравнений

    3x1+x2 =3
    3x1-x2 =0
    x1-x2 =3
    и линию для функции f
    x1+2x2 =0
    3. Наидем область допустимых значений

4. Как видно на графике области допустимых значений для ограничении (1), (2) и (3) не пересекаются, значит система не имеет допустимых решений. Ограничения противоречивы.

5. Для того чтобы система была решаема, она должна быть например такой F = x1+2x2 ->max

    3x1+x2 <=3
    3x1-x2 <=0
    x1-x2 <=3
    x1>=0
    x2>=0
    Тогда область допустимых решений - треугольник АВС
    И функция F достигает максимума в точке С (0; 3) и F=6
    ЗАДАЧА 3

Имеются следующие данные об урожайности зерновых культур Y (в ц/га) количестве осадков Х1 (в см) выпавших в вегетационный период

    i 1 2 3 4 5 6 7 8 9 10
    Yi 23 24 27 27 32 31 33 35 34 32
    Xi 25 27 30 35 36 38 39 41 42 45
    Требуется :
    а)Определить параметры уравнения регрессии;

б) определить коэффициент парной корреляции и проверить его статическую надежность

1. Количественные оценки связи между величинами случайного процесса устанавливает регрессионный анализ. Связи между переменными могут линейные и нелинейные. В простейшем случае значения Y выражаются в виде линейной зависимости : Y =a + bX,

    где a и b - коэффициенты регрессии.

Наиболее часто для расчетов коэффициентов применяют метод наименьших квадратов. 2. По методу наименьших квадратов произведем расчет коэффициентов уравнения регрессии из системы уравнении

    sum(Yi)= n*A + B sum(Xi)
    sum(XiYi) = A* sum(Xi) + B*sum(Xi2))
    имеем
    А = sum(Yi) * sum(Xi2) - sum(XiYi) * sum(Xi)
    n* sum(Xi2)- (sum(Xi) 2)
    B = n*sum(XiYi) - sum(Xi)* sum(Yi)
    n*sum(Xi2)- (sum(Xi))2
    A=S2*S3-S4*S1 B=n*S4-S1*S2,
    n*S3-S1*S1 n*S3-S1*S1
    где S1=SUM(Xi) S2=SUM(Yi) S3=SUM(Xi2)
    S4=SUM(XiYi)
    n - общее число замеров, в нашем случае это 10
    2. В результате расчета получено уравнение регрессии:
    Y=8, 917+0, 583*Х
    3. Подставив значения X в уравнение найдем Y расчетное.

4. По значениям экспериментальным и теоретическим строим графики.

5. Связь между двумя случайными величинами, которая определяется с некоторой вероятностью, называется корреляционной. Для количественной оценки линейной корреляции используется коэффициент парной корреляции

    r = 10*S4-S1*S2
    (10*S3-S12)*(10*S5-S22)
    S5=SUM(Yi2)
    r=0, 9104

По таблице Чеддока найдём тесноту связи между двумя явлениями, связь очень тесная"

6. Качество уравнений регрессии оценивают по его прогнозирующей способности. Уравнения хорошо прогнозируют(т. е. адекватно описывают) экспериментальные данные, если расхождения между экспериментальными и расчетными данными находятся в допустимых пределах.

Для проверки адекватности уравнения найдем среднюю относительную ошибку прогнозирования E:

    E=100 *SUM |Yэi - Ypi|
    10 Yэi
    где Yэi -экспериментальное, Ypi - расчетное значение
    Е=4, 434%

Это сравнительно большое значение ошибки прогнозирования при полученном выше значении r.

Внимательно посмотрим на значения отклонений между фактическими и расчетными значениями Y. Почти непрерывный рост уражайности после 8 года сменяется спадом. 10 год дает самый большой прирост ошибки прогнозирования.

По всей видимости, для описания зависимости, лучше подошло бы не уравнение прямой, а уравнение параболлы, так как после достижения определенного уровня осадков урожайность начинает падать (много воды - это тоже плохо для урожая) см. последние значения Х и Y В 4 год также сравнительно большое расхождение, это может быть вызванно тем, что урожайность зерновых зависит не только от количества осадков, но и от многих других факторов, например от количества теплых дней. Просто было холодно.

    i
    X
    Y
    X2
    XY
    Yрасч
    Y2
    (Y-Yрасч) Y
    1
    25
    23
    625
    575
    23, 5
    529
    0, 0217
    2
    27
    24
    729
    648
    24, 67
    576
    0, 0279
    3
    30
    27
    900
    810
    26, 42
    729
    0, 0215
    4
    35
    27
    1225
    945
    29, 33
    729
    0, 0863
    5
    36
    32
    1296
    1152
    29, 92
    1024
    0, 0650
    6
    38
    31
    1444
    1178
    31, 08
    961
    0, 0026
    7
    39
    33
    1521
    1287
    31, 67
    1089
    0, 0403
    8
    41
    35
    1681
    1435
    32, 83
    1225
    0, 0620
    9
    42
    34
    1764
    1428
    33, 42
    1156
    0, 0171
    10
    45
    32
    2025
    1440
    35, 17
    1024
    0, 0991
    е
    358
    298
    13210
    10898
    298
    9042
    0, 4434
    среднее
    35, 8
    29, 8
    Коэффициенты регрессии:
    B=0, 583
    A=8, 917
    Уравнение регрессии: Y=8, 917+0, 583*Х
    Коэффициент парной корреляции:
    R=0, 91
    Средняя относительная ошибка прогнозирования:
    E=4, 43439
    ЗАДАЧА №4
    Построить сетевую модель ремонта Вашей квартиры
    а) определить критический путь
    б) рассчитать поздние сроки окончания и начала событий
    в) рассчитать ранние сроки окончания и начала событий
    г) рассчитать резервы событий
    Решение:

Делаем ремонт двухкомнатной квартиры улучшенной планировки: жилая комната, детская, кухня, ванна, туалет и коридор.

    2. Необходимо сделать:
    сменить обои во всех помещениях;
    покрасить окна;

в зале и коридоре сделать подвесные потолки с рассеяным светом в оттальных помещениях потолок покрывается краской КЧ

    покрасить входную дверь;
    постелить по всей квартире линолиум
    3. Строим таблицу ремонта и сетевой график

4. "Четырехсекторным" методом рассчитываем параметры сетевого графика и определяем "критический путь".

    5. Расчитываем параметры сетевого графика и резервы времени

Скачен 1421 раз.

Скачать