Новости

Заказ решебника

Закажи решебник и скоро он будет на сайте

  • Положительные стороны участия в школьных олимпиадах
    Облегчение поступления в университет. Вы можете задать своему ребенку конечную цель всего учебного процесса, тем самым убедив его в необходимости хорошей учебы. Часто родители говорят своим детям, что если они будут плохо учиться, то не смогут приобрести хорошую профессию в будущем, и пойдут в дворники.
  • Особенности питания школьника
    Питание в школе должно быть хорошо организованным. Школьник должен быть обеспечен в столовой обедом и горячим завтраком. Интервал между первым и вторым приемом пищи не должен превышать четыре часа. Наиболее оптимальным вариантом должен быть завтрак ребенка дома, в школе же он съедает второй завтрак
  • Детская агрессия в школе и сложности в процессе обучения
    Между детской агрессией и трудностями в процессе обучения установлена определенная взаимосвязь. Каждый школьник хочет иметь в школе много друзей, иметь хорошую успеваемость и хорошие оценки. Когда это у ребенка не получается, он делает агрессивные поступки. Каждое поведение на что-то нацелено, имеет смысловую
  • Советы психологов родителям
    В любых олимпиадах и всевозможных конкурсах ребенок, прежде всего, самовыражается и самореализовывается. Родители обязательно должны поддерживать своего ребенка, если он увлечен интеллектуальными соревнованиями. Ребенку важно осознавать себя частью общества интеллектуалов, в котором царят сопернические настроения, и ребенок сравнивает свои достигнутые
  • Ребенок отказывается от приема пищи в столовой школы
    Разборчивому ребенку школьная еда может прийтись не по вкусу. Зачастую, это самая распространенная причина отказа школьника от еды. Все происходит от того, что меню в школе не учитывает вкусовые потребности каждого отдельного ребенка. В школе никто не будет исключать какой-либо продукт из питания отдельного ребенка дабы
  • Как родители относятся к школе
    Для того чтобы понять как родители относятся к школе, то важно для начала охарактеризовать современных родителей, возрастная категория которых весьма разнообразна. Не смотря на это большую часть из них составляют родители, которые относятся к поколению девяностых годов, которые отличаются тяжелым временем для всего населения.
  • Школьная форма
    Первые школьные сборы навсегда остаются в памяти каждого из нас. Родители начинают закупать всю необходимую канцелярию, начиная с августа. Главным школьным атрибутом является форма школьника. Наряд должен быть тщательно подобран, чтобы первоклассник чувствовал себя уверенно. Введение школьной формы обосновывается многими причинами.

Рефераты

Уважаемые школьники и студенты! 

Уже сейчас на сайте вы можете воспользоваться более чем 20 000 рефератами, докладами, шпаргалками, курсовыми и дипломными работами.Присылайте нам свои новые работы и мы их обязательно опубликуем. Давайте продолжим создавать нашу коллекцию рефератов вместе!!!

Вы согласны передать свой реферат (диплом, курсовую работу и т.п.), а также дальнейшие права на хранение,  и распространение данного документа администрации сервера "mcvouo.ru"?

Спасибо за ваш вклад в коллекцию!

Всего 19436 рефератов.

Найти

Нахождение оптимальных планов производства продукции и их экономико-математический анализ - (контрольная)

Дата добавления: март 2006г.

Министерство Образования, Молодежи и Спорта Республики Молдова

    Академия Экономических Знаний Молдовы
    Факультет Бухгалтерского учета и аудита
    Кафедра Экономической Кибернетики и Информатики
    Отчет по лабораторной работе №1
    по предмету:
    “Исследование операций”
    по теме:

“Нахождение оптимальных планов производства продукции и их экономико-математический анализ”

    Выполнили: студенты CON-954 f/f группы
    Инюточкин Сергей
    Стоянов Сергей

Проверил: доктор экономики, почетный профессор Польской АН В. П. Зубрицкий

    Кишинев 1998
    Содержание

Глава 1. Задание______________________________________________3 1. 1 Цель работы __________________________________________3 1. 2 Требования к выполнению работы________________________3 1. 3 Условия работы________________________________________3

Глава 2. Решение задач на ЭВМ с использованием пакета LINDO___5 2. 1 Краткая характеристика пакета LINDO____________________5 2. 2 Ход выполнения задания на ЭВМ с пакетом LINDO_________5

Выводы______________________________________________________11

Список используемой литературы______________________________12 Глава I. Задание.

    Цель лабораторной работы.
    ЦЕЛЬ - научиться:

самостоятельно разрабатывать математические модели задач по определению оптимальных планов производства продукции для предприятий и фирм; решать полученные математические задачи на ЭВМ с использованием пакетов прикладных программ решения задач линейного программирования; проводить содержательный послеоптимизационный анализ полученного решения, включая и вопросы чувствительности оптимального плана к изменению коэффициентов целевой функции и правых частей ограничений.

    1. 2 Требования к выполнению работы:

сформулировать свой вариант задачи и написать ее экономико-математическую модель;

    составить двойственную задачу;

решить задачу на ПЭВМ по составленной экономико-математической модели, используя пакет решения задач линейного программирования. Привести результаты решения задачи на ЭВМ; проанализировать полученные результаты решения задачи, а именно: какой смысл имеет полученный план и значение целевой функции; как используются данные в условии задачи ресурсы;

выписать оптимальное решение двойственной задачи и объяснить, какой экономический смысл имеет каждая оптимальная оценка; проанализировать каждое ограничение задачи, используя решение двойственной задачи;

оформить письменный отчет по лабораторной работе, включающей все вышеуказанные пункты задания и список использованной литературы.

    1. 3 Условия задачи

В состав рациона кормления на стойловый период дойных коров входит 9 видов кормов. В таблице 1. 3. 1 приводятся необходимые данные о кормах. Для обеспечения намечаемой продуктивности стада необходимо, чтобы в рационе кормления содержалось не менее (14, 5+0, 1N) кг кормовых единиц, (1750+N) г перевариваемого протеина, (110+N) г кальция, (45+0, 1N) г фосфора, (660+0, 1N) мг каротина и (18+0, 1N) кг сухого вещества. В качестве дополнительных условий даны следующие соотношения для отдельных групп кормов в рационе: концентратов (кукуруза, жмых и комбикорм)– 5-20%, грубых кормов (стебли кукурузы, сено люцерновое, сено суданки) – 15-35%, силоса – 35-60%, корнеплодов (свекла сахарная и кормовая) –10-20%. Определить рацион кормления животных по критерию минимальной себестоимости. N– порядковый номер фамилии студента по журналу =8.

Таблица 1. 3. 1 Содержание питательных веществ в 1 кг корма и его себестоимость.

    Питательные вещества
    Кукуруза
    Жмых
    Стебли кукурузы
    Сено люцерны
    Сено суданки
    Силос кукурузы
    Свекла сахарная
    Свекла кормовая
    Комби-корм
    Кормовые единицы, кг
    1, 34
    1, 9
    0, 37
    0, 49
    0, 52
    0, 2
    0, 26
    0, 12
    0, 9
    Перевариваемый протеин, г
    78
    356
    14
    116
    65
    19
    12
    9
    112
    Кальций, г
    0, 7
    5, 9
    6, 2
    17, 7
    5, 7
    1, 5
    0, 5
    0, 4
    15
    Фосфор, г
    3, 1
    9, 1
    1
    2, 2
    2, 3
    0, 5
    0, 4
    13
    --
    Каротин, мг
    4
    2
    5
    45
    15
    15
    --
    --
    --
    Сухое вещество
    0, 87
    0, 87
    0, 8
    0, 85
    0, 85
    0, 26
    0, 24
    0, 12
    0, 87
    Себестоимость,
    лей/кг
    0, 43+
    0, 01N
    0, 65
    0, 01N
    0, 05+
    0, 01N
    0, 25+
    0, 01N
    0, 3+
    0, 01N
    0, 8
    0, 01N
    0, 15+
    0, 01N
    0, 14+
    0, 01N
    0, 75
    0, 01N

Глава 2. Ход выполнения задания на ПЭВМ с использованием пакета LINDO

    2. 1 Краткое описание пакета LINDO

Пакет LINDO представляет собой прикладную программу, предназначенную для решения различных задач линейного программирования и анализа полученных результатов.

Данная программа позволяет пользователям работать с исходными данными, практически не изменяя их, что очень удобно для неопытных пользователей, на которых рассчитана данная программа. Программа позволяет получить хороший анализ результатов в удобной форме. Однако при всех достоинствах, пакет имеет и недостатки: отсутствие на экране информации на румынском или русском языках и очень неудобный интерфейс, не позволяющий следить за ходом ввода данных и выполнения работы. Хотя возможность просмотра и исправления введенных данных предусмотрена, но она неудобна пользователю.

Необходимые для работы с пакетом команды описаны в пункте 2. 2

2. 2 Ход выполнения задания на ПЭВМ с использованием пакета LINDO

1. Напишем экономико-математическую модель данной производственной задачи. Обозначим через xj(j=1, 8) количество производимой продукции. Кроме того, т. к. объем ресурсов для оборудования дается в часах, а производительность оборудования в м¤/час, то необходимо перейти к соизмеримости.

Таким образом, задача сводится к нахождению оптимального плана производства продукции каждого вида с целью получения максимальной прибыли.

    ЗЛП будет выглядеть так:
    Целевая функция:

min Z = 0. 51x1+0. 57x2+0. 13x3+0. 33x4+0. 38x5+0. 72x6+0. 23x7+0. 22x8+0. 67x9

    при ограничениях:

1. 34x1+ 1. 9x2+0. 37x3+0. 49x4+0. 52x5+ 0. 2x6+0. 26x7+0. 12x8+ 0. 9x9 >=15. 3 78x1+ 356x2+ 14x3+ 116x4+ 65x5+ 19x6+ 12x7+ 9x8+ 112x9 >=1758 0. 7x1+ 5. 9x2+ 6. 2x3+17. 7x4+ 5. 7x5+ 1. 5x6+ 0. 5x7+ 0. 4x8+ 15x9 >=118 3. 1x1+ 9. 1x2+ x3+ 2. 2x4+ 2. 3x5+ 0. 5x6+ 0. 4x7+ 13x8 >=45. 8 4x1+ 2x2+ 5x3+ 45x4+ 15x5+ 15x6 >=660. 8 0. 87x1+0. 87x2+ 0. 8x3+0. 85x4+0. 85x5+0. 26x6+0. 24x7+0. 12x8+0. 87x9 >=18. 8 x1+ x2+ x9 >=5

    x1+ x2+ x9 <=20
    x3+ x4+ x5>=15
    x3+ x4+ x5<=35
    x6 >=35
    x6 <=60
    x7+ x8 >=10
    x7+ x8 <=20
    Xj >= 0

Экономико-математическая модель состоит из целевой функции, системы ограничений и условия неотрицательности переменных xj.

    Двойственной к данной задаче является следующая:
    Целевая функция:

max F = 15. 3y1+1758y2+118y3+45. 8y4+660. 8y5+18. 8y6+5y7-20y8+15y9-35y10+ 35y11-60y12+10y13-20y14

    при ограничениях:

1. 34y1+ 78y2+ 0. 7y3+3. 1y4+ 4y5+0. 87y6+y7-y8 <=0. 51 1. 9y1+ 356y2+ 5. 9y3+9. 1y4+ 2y5+0. 87y6+y7-y8 <=0. 57 0. 37y1+ 14y2 +6. 2y3+ y4+ 5y5+ 0. 8y6+ y9-y10 <=0. 13 0. 49y1+ 116y2+17. 7y3+2. 2y4+45y5+0. 85y6+ y9-y10 <=0. 33 0. 52y1+ 65y2+ 5. 7y3+2. 3y4+15y5+0. 85y6+ y9-y10 <=0. 38 0. 2y1+ 19y2+ 1. 5y3+0. 5y4+15y5+0. 26y6+ y11-y12 <=0. 72 0. 26y1+ 12y2+ 0. 5y3+0. 4y4+ 0. 24y6+ y13-y14 <=0. 23 0. 12y1+ 9y2+ 0. 4y3+ 13y4+ 0. 12y6+ y13-y14 <=0. 22 0. 9y1+112y2+ 15y3+ 0. 87y6+y7-y8 <=0. 67

Данные задачи составляют пару двойственных задач. Решение прямой задачи дает оптимальный план минимизации расходов на рацион кормления, а решение двойственной задачи– оптимальную систему оценок питательной ценности используемых кормов.

    3. Для решения прямой задачи воспользуемся пакетом LINDO.

Пакет установлен на диске Е: в каталоге \LINDO. Для его загрузки активизируем данный каталог и находим файл с именем lindo. exe.

Вначале необходимо ввести целевую функцию F. Для этого после двоеточия (: ) набираем слово max и после пробела вводим целевую функцию. После знака вопроса набираем ST и вводим ограничения. В конце набираем END.

Для просмотра всей задачи используют команду LOOK ALL, а для просмотра строки LOOK < N строки >.

При необходимости можно произвести редактирование той или иной строки путем набора команды ALT < N строки > и изменять либо значения переменных (VAR), либо правых частей (RHS), либо направление оптимизации с max на min и наоборот. Решение производится вводом команды GO, а для проведения послеоптимизационного анализа после (? ) нажимают Y.

После введения задачи и набора команды GO получаем следующие результаты: OBJECTIVE FUNCTION VALUE

    32, 1779200
    VARIABLE
    VALUE
    REDUCED COST
    x1
    3. 943977
    0
    x2
    1. 056023
    0
    x3
    13. 927200
    0
    x4
    1. 072801
    0
    x5
    0
    0. 193695
    x6
    35
    0
    x7
    0
    0. 009258
    x8
    10
    0
    x9
    0
    0. 169071
    ROW
    SLACK OF SURPLUS
    DUAL PRICES
    2
    5. 870109
    0
    3
    0
    0. 000247
    4
    52. 828530
    0
    5
    139. 823500
    0
    6
    0
    0. 004369
    7
    7. 903641
    0
    8
    0
    0. 473236
    9
    15
    0
    10
    0
    0. 104691
    11
    20
    0
    12
    0
    0. 649760
    13
    25
    0
    14
    0
    0. 217775
    15
    10
    0
    Nо. ITERATIONS = 12

4. Из полученного решения исходит, что минимальные затраты на составление рациона питания, содержащего все необходимые элементы составляют 32, 18 денежных единиц. То есть целевая функция:

min Z = 0. 51*3, 943977+0. 57*1, 056023+0. 13*13, 9272+0. 33*1, 072801+ +0. 72*35+0. 22*10=32, 17792

    Оптимальный рацион питания:

Х = (3, 943977; 1, 056023; 13, 927200; 1, 072801; 0; 35; 0; 10; 0)

    то есть в рацион войдет:
    Кукурузы –3, 943977 кг
    Жмыха – 1, 056023 кг
    Стеблей кукурузы – 13, 9272 кг
    Сена люцерны – 1, 072801 кг
    Силоса кукурузы – 35 кг
    Свеклы кормовой – 10 кг

Остальные корма (сено суданки, свекла сахарная и комбикорм) в рацион не вошли.

5. Оптимальным планом двойственной задачи является следующий:

Y=(0; 0. 000247; 0; 0; 0, 004369; 0; 0, 473236; 0; 0, 104691; 0; 0, 64976; 0; 0, 217775; 0)

При этом целевая функция достигает своего максимального значения:

max F = 1758*0, 000247+660. 8*0, 004369+5*0, 473236+15*0, 104691+ 35*0, 64976+10*0, 217775=32, 17792

Таким образом мы получили решение прямой двойственной задач, значения целевых функций которых равны:

    Z(X)=F(Y)=32, 17792

6. Проанализируем каждое ограничение двойственной задачи, подставляя вместо Y значения двойственных оценок

    78*0. 000247 +4*0. 004369+1*0. 473236 =0. 5099 <=0. 51
    356*0. 000247+2*0. 004369+1*0. 473236 =0. 5699 <=0. 57
    14*0. 000247 +5*0. 004369+1*0. 104691 =0. 12999<=0. 13
    116*0. 000247+45*0. 004369+1*0. 104691 =0. 3299 <=0. 33
    65*0. 000247 +15*0. 004369+1*0. 104691 =0. 18628<=0. 38
    19*0. 000247 +15*0. 004369+1*0. 64976 =0. 71998<=0. 72

12*0. 000247 +1*0. 217775 =0. 2207 <=0. 23 9*0. 000247 +1*0. 217775 =0. 21999<=0. 22 112*0. 000247+1*0. 473236 =0. 5009 <=0. 67

Из полученных данных видно, что все ресурсы используются оптимально, кроме сена суданки и комбикорма, которые вообще не вошли в рацион.

7. Для проведения анализа устойчивости оптимального плана прямой задачи при изменении коэффициентов целевой функции воспользуемся следующими данными, полученными с помощью ПЭВМ. Для этого в ответ на запрос RANGE вводим YES. Результы получим в следующем виде:

    RANGES IN WHICH THE BASIS IS UNCHANGED:
    OBJ COEFFICIENT RANGES
    VARIABLE
    CURRENT
    ALLOWABLE
    ALLOWABLE
    COEF
    INCREASE
    DECREASE
    x1
    0. 51
    0. 07
    0. 381798
    x2
    0. 57
    0. 485098
    0. 07
    x3
    0. 13
    0. 177986
    0. 093040
    x4
    0. 33
    0. 761069
    0. 177986
    x5
    0. 38
    INFINITY
    0. 193695
    x6
    0. 72
    INFINITY
    0. 649760
    x7
    0. 23
    INFINITY
    0. 009258
    x8
    0. 22
    0. 009258
    0. 217775
    x9
    0. 67
    INFINITY
    0. 169071

Как видно коэффициенты Cj при Xj в целевой функции могут изменяться таким образом:

    0, 128202 < C1 < 0, 58
    0, 5 < C2 < 1, 055098
    0, 03696 < C3 < 0, 307986
    0, 152014 < C4 < 1, 091069
    0, 186305 < C5 < INFINITY
    0, 07024 < C6 < INFINITY
    0, 220742 < C7 < INFINITY
    0, 002225 < C8 < 0, 229258
    0, 500929 < C9 < INFINITY

Если коэффициенты целевой функции лежат соответственно в заданных диапазонах, то оптимальный план прямой задачи остается без изменений.

Соответственно оптимальный план двойственной задачи будет устойчив при изменении правых частей ограничений, заложенных в следующей таблице.

    ROW
    CURRENT
    ALLOWABLE
    ALLOWABLE
    RHS
    INCREASE
    DECREASE
    2
    15. 3
    5. 870109
    INFINITY
    3
    1758
    1116. 54
    298. 960100
    4
    118
    52. 828530
    INFINITY
    5
    45. 8
    139. 823500
    INFINITY
    6
    660. 8
    117. 2392
    43. 69926
    7
    18. 8
    7. 903641
    INFINITY
    8
    5
    4. 409440
    3. 181932
    9
    20
    INFINITY
    15
    10
    15
    8. 567274
    9. 957481
    11
    35
    INFINITY
    20
    12
    35
    2. 886976
    15. 53039
    13
    60
    INFINITY
    25
    14
    10
    10
    10
    15
    20
    INFINITY
    10
    Выводы.

На основе проведенной лабораторной работы можно сделать следующий вывод: полученное решение прямой задачи является оптимальным, то есть ферма, используя данный рацион минимизирует его себестоимость, при этом питательная ценность рациона находится в пределах норм.

    Список использованной литературы:

А. Ф. Гамецкий, Д. И. Соломон Лабораторный практикум по курсу "Исследование операций" (для экономических специальностей), Кишинев, 1995. Конспект лекций по предмету “Исследование операций” доктора экономики В. П. Зубрицкого

Скачен 798 раз.

Скачать