Новости

Заказ решебника

Закажи решебник и скоро он будет на сайте

  • Положительные стороны участия в школьных олимпиадах
    Облегчение поступления в университет. Вы можете задать своему ребенку конечную цель всего учебного процесса, тем самым убедив его в необходимости хорошей учебы. Часто родители говорят своим детям, что если они будут плохо учиться, то не смогут приобрести хорошую профессию в будущем, и пойдут в дворники.
  • Особенности питания школьника
    Питание в школе должно быть хорошо организованным. Школьник должен быть обеспечен в столовой обедом и горячим завтраком. Интервал между первым и вторым приемом пищи не должен превышать четыре часа. Наиболее оптимальным вариантом должен быть завтрак ребенка дома, в школе же он съедает второй завтрак
  • Детская агрессия в школе и сложности в процессе обучения
    Между детской агрессией и трудностями в процессе обучения установлена определенная взаимосвязь. Каждый школьник хочет иметь в школе много друзей, иметь хорошую успеваемость и хорошие оценки. Когда это у ребенка не получается, он делает агрессивные поступки. Каждое поведение на что-то нацелено, имеет смысловую
  • Советы психологов родителям
    В любых олимпиадах и всевозможных конкурсах ребенок, прежде всего, самовыражается и самореализовывается. Родители обязательно должны поддерживать своего ребенка, если он увлечен интеллектуальными соревнованиями. Ребенку важно осознавать себя частью общества интеллектуалов, в котором царят сопернические настроения, и ребенок сравнивает свои достигнутые
  • Ребенок отказывается от приема пищи в столовой школы
    Разборчивому ребенку школьная еда может прийтись не по вкусу. Зачастую, это самая распространенная причина отказа школьника от еды. Все происходит от того, что меню в школе не учитывает вкусовые потребности каждого отдельного ребенка. В школе никто не будет исключать какой-либо продукт из питания отдельного ребенка дабы
  • Как родители относятся к школе
    Для того чтобы понять как родители относятся к школе, то важно для начала охарактеризовать современных родителей, возрастная категория которых весьма разнообразна. Не смотря на это большую часть из них составляют родители, которые относятся к поколению девяностых годов, которые отличаются тяжелым временем для всего населения.
  • Школьная форма
    Первые школьные сборы навсегда остаются в памяти каждого из нас. Родители начинают закупать всю необходимую канцелярию, начиная с августа. Главным школьным атрибутом является форма школьника. Наряд должен быть тщательно подобран, чтобы первоклассник чувствовал себя уверенно. Введение школьной формы обосновывается многими причинами.

Рефераты

Уважаемые школьники и студенты! 

Уже сейчас на сайте вы можете воспользоваться более чем 20 000 рефератами, докладами, шпаргалками, курсовыми и дипломными работами.Присылайте нам свои новые работы и мы их обязательно опубликуем. Давайте продолжим создавать нашу коллекцию рефератов вместе!!!

Вы согласны передать свой реферат (диплом, курсовую работу и т.п.), а также дальнейшие права на хранение,  и распространение данного документа администрации сервера "mcvouo.ru"?

Спасибо за ваш вклад в коллекцию!

Всего 19436 рефератов.

Найти

Анализ погрешностей волоконно-оптического гироскопа - (диплом)

Дата добавления: март 2006г.

    Содержание.

Введение................................................................................................................................. 1. Принципы волоконно-оптической гироскопии............................ 1. 1. Основные характеристики ВОГ................................................... Принцип взаимности и регистрация фазы в ВОГ.......

Модель шумов и нестабильностей в ВОГ.........................

Влияние элементов ВОГ на точностные характеристики системы......................................................................................................................... Характеристики источников излучения.................................

Шумовые характеристики волоконно-оптического контура................................................................................................................... Шумовые характеристики фотодетекторов......................

Анализ прямых динамических эффектов (температурных градиентов и механических напряжений)..................................................................................................................... Влияние внешнего магнитного поля на точностные характеристики ВОГ.................................................................................... Методы компенсации погрешностей................................................. Компенсация паразитной модуляции в волоконно-оптическом гироскопе............................................................................... Компенсация избыточного шума в волоконно-оптическом гироскопе с ответвителем типа 3x3...............

    Компенсация обратного рэлеевского рассеяния.........

Компенсация влияния эффекта Керра на точность ВОГ............................................................................................................................ Расчет сметной калькуляции НИР....................................................... Исходные положения........................................................................... Определение трудоемкости и календарных сроков работы................................................................................................................... Расчет расходов по статьям затрат и составление сметной калькуляции................................................................................. Выводы по расчету.................................................................................

    Безопасность жизнедеятельности и охрана труда.............

Организация рабочих мест............................................................. Температура, влажность, давление.......................................

Требования к освещению................................................................ Требования к уровням шума и вибрации............................

Требования к защите от статического электричества и излучений........................................................................................... Требования к видеотерминальному устройству..........

Электробезопасность........................................................................... Пожарная безопасность..................................................................... Предполагаемые методы защиты...........................................

Экология и охрана окружающей среды........................................... Заключение...........................................................................................................................

    Введение

Волоконный оптический гироскоп (ВОГ) - оптико-электронный прибор, создание которого стало возможным лишь с развитием и совершенствованием элементной базы квантовой электроники. Прибор измеряет угловую скорость и углы поворота объекта, на котором он установлен. Принцип действия ВОГ основан на вихревом (вращательном) эффекте Саньяка.

Интерес зарубежных и отечественных фирм к оптическому гироскопу базируется на его потенциальных возможностях применения в качестве чувствительного элемента вращения в инерциальных системах навигации, управления и стабилизации. Этот прибор в ряде случаев может полностью заменить сложные и дорогостоящие электромеханические (роторные) гироскопы и трехосные гиростабилизированные платформы. По данным зарубежной печати в будущем в США около 50% всех гироскопов, используемых в системах навигации, управления и стабилизации объектов различного назначения, предполагается заменить волоконными оптическими гироскопами.

Возможность создания реального высокочувствительного ВОГ появилась лишь с промышленной разработкой одномодового диэлектрического световода с малым затуханием. Именно конструирование ВОГ на таких световодах определяет уникальные свойства прибора. К этим свойствам относят:

потенциально высокую чувствительность (точность) прибора, которая уже сейчас на экспериментальных макетах 0, 1 град/ч и менее;

малые габариты и массу . конструкции, благодаря возможности создания ВОГ полностью на интегральных оптических схемах;

невысокую стоимость производства и конструирования при массовом изготовлении и относительную простоту технологии;

ничтожное потребление энергии, что имеет немаловажное значение при использовании ВОГ на борту;

большой динамический диапазон измеряемых угловых скоростей (в частности, например, одним прибором можно измерять скорость поворота от 1 град/ч до 300 град/с);

отсутствие вращающихся механических элементов (роторов) и подшипников, что повышает надежность и удешевляет их производство;

практически мгновенную готовность к работе, поскольку не затрачивается время на раскрутку ротора;

нечувствительность к большим линейным ускорениям и следовательно, работоспособность в условиях высоких механических перегрузок;

высокую помехоустойчивость, низкую чувствительность к мощным внешним электромагнитным воздействиям благодаря диэлектрической природе волокна;

слабую подверженность проникающей гамма-нейтронной радиации, особенно в диапазоне 1, 3 мкм.

Волоконный оптический гироскоп может быть применен в качестве жестко закрепленного на корпусе носителя чувствительного элемента (датчика) вращения в инерциальных системах управления и стабилизации. Механические гироскопы имеют так называемые гиромеханические ошибки, которые особенно сильно проявляются при маневрировании носителя (самолета, ракеты, космического аппарата). Эти ошибки еще более значительны если инерциальная система управления конструируется с жестко закрепленными или “подвешенными” датчиками непосредственно к телу носителя. Перспектива использования дешевого оптического датчика вращения, который способен работать без гиромеханических ошибок в инерциальной системе управления, есть еще одна причина особого интереса к оптическому гироскопу. Появление идеи и первых конструкций волоконного оптического гироскопа тесно связан с разработкой кольцевого лазерного гироскопа (КЛГ). В КЛГ чувствительным контуром является кольцевой самовозбуждающийся резонатор с активной газовой средой и отражающими зеркалами, в то время как в ВОГ пассивный многовитковый диэлектрический световодный контур возбуждается “внешним” источником светового излучения. Эти особенности определяют по крайней мере пять преимуществ ВОГ по сравнению с КЛГ:

В ВОГ отсутствует синхронизация противоположно бегущих типов колебаний вблизи нулевого значения угловой скорости вращения, что позволяет измерять очень малые угловые скорости, без необходимости конструировать сложные в настройке устройства смещения нулевой точки;

2. Эффект Саньяка, на котором основан принцип работы прибора, проявляется на несколько порядков сильнее из-за малых потерь в оптическом волокне и большой длины волокна.

3. Конструкция ВОГ целиком выполняется в виде твердого тела (в перспективе полностью на интегральных оптических схемах), что облегчает эксплуатацию и повышает надежность по сравнению с КЛГ.

4. ВОГ измеряет скорость вращения, в то время как КЛГ фиксирует приращение скорости.

5. Конфигурация ВОГ позволяет “чувствовать” реверс направления вращения.

Эти свойства ВОГ, позволяющие создать простые высокоточные конструкции полностью на дешевых твердых интегральных оптических схемах при массовом производстве привлекают пристальное внимание разработчиков систем управления. По мнению ряда зарубежных фирм, благодаря уникальным техническим возможностям ВОГ будут интенсивно развиваться.

Зарубежные авторы констатируют, что разработка конструкции ВОГ и доведение его до серийных образцов не простая задача. При разработке ВОГ ученые и инженеры сталкиваются с рядом трудностей. Первая связана с технологией производства элементов ВОГ. В настоящее время еще мало хорошего одномодового волокна, сохраняющего направление поляризации; производство светоделителей, поляризаторов, фазовых и частотных модуляторов, пространственных фильтров, интегральных оптических схем находится на начальной стадии развития. Число разработанных специально для ВОГ излучателей и фотодетекторов ограничено. Вторую трудность связывают с тем, что при кажущейся простоте прибора и высокой чувствительности его к угловой скорости вращения он в то же время чрезвычайно чувствителен к очень малым внешним и внутренним возмущениям и нестабильностям, что приводит к паразитный дрейфам, т. е. к ухудшению точности прибора. К упомянутым возмущениям относятся температурные градиенты, акустические шумы и вибрации, флуктуации электрических и магнитных полей, оптические нелинейные эффекты флуктуации интенсивности и поляризации излучения, дробовые шумы в фотодетекторе, тепловые шумы в электронных цепях и др.

Фирмами и разработчиками ВОГ обе эти задачи решаются. Совершенствуется технология производства элементов в ВОГ, теоретически и экспериментально исследуются физическая природа возмущений и нестабильностей, создаются и испытываются различные схемные варианты ВОГ с компенсацией этих возмущений, разрабатываются фундаментальные вопросы использования интегральной оптики. Точность ВОГ уже сейчас близка к требуемой в инерциальных системах управления. В специальной научной и периодической литературе проблеме ВОГ уже опубликовано множество научных статей. Анализ этих статей свидетельствует о необходимости дальнейшего изучения этой проблемы и разработки новых способов улучшения качественных характеристик ВОГ.

Систематизация и обобщение узловых вопросов теории и практики создания ВОГ также является важным этапом.

Задачей дипломной работы является анализ работы ВОГ, обобщенной модели шумов и нестабильностей и оценка предельной (потенциальной) чувствительности прибора. На основе свойства взаимности необходимо рассмотреть минимальную конфигурацию ВОГ. Затем оценить современное состояние элементной базы. При этом значительное внимание уделить свойствам волоконных световодов и провести анализ возможных неоднородностей и потерь для различных типов волокон. Рассмотреть основные элементы ВОГ: волоконный контур, излучатели и фотодетекторы, а также предложить способы компенсации шумов и нестабильностей ВОГ (таких, как обратное рэлеевское рассеяние, оптический нелинейный эффект, температурные градиенты, магнитное поле и др. ).

Основной задачей дипломной работы является рассмотрение ключевых аспектов теории ВОГ на основе анализа погрешностей его элементов и качественной оценки точностных характеристик устройства с учетом использования различных подходов к решению проблемы повышения его чувствительности.

Необходимо также рассмотреть различные схемотехнические методы снижения уровня шумов и нестабильностей ВОГ.

Отдельно отразить технико-экономические аспекты работы, вопросы безопасности жизнедеятельности при проведении исследований, а также проблемы экологической безопасности при использовании прибора.

    1. Принципы волоконно-оптической гироскопии
    1. 1. Основные характеристики ВОГ

Оптический гироскоп относится к классу приборов, в которых в замкнутом оптическом контуре распространяются встречно бегущие световые лучи. Принцип действия оптического гироскопа основан на “вихревом” эффекте Саньяка, открытым этим ученым в 1913 г. [1]. Сущность вихревого эффекта заключается в следующем. Если в замкнутом оптическом контуре в противоположных направлениях распространяются два световых луча, то при неподвижном контуре фазовые набеги обоих лучей, прошедших весь контур, будут одинаковыми. При вращении контура вокруг оси, нормальной к плоскости контура, фазовые набеги лучей неодинаковы, а разность фаз лучей пропорциональна угловой скорости вращения контура. Для объяснения вихревого эффекта Саньяка разработаны три теории: кинематическая, доплеровская и релятивистская . Наиболее простая из них - кинематическая, наиболее строгая - релятивистская, основанная на общей теории относительности. Рассмотрим вихревой эффект Саньяка в рамках кинематической теории.

    Рис 1. 1. Кинематическая схема вихревого эффекта Саньяка.

На рис. 1. 1 изображен плоский замкнутый оптический контур произвольной формы, в котором распространяются в противоположных направлениях две световые волны 1 и 2 (рис. 1. 1). Плоскость контура перпендикулярна оси вращения, проходящей через произвольную точку О. Угловую скорость вращения контура обозначим W. Участок пути светового луча АВ примем бесконечно малым, его длину обозначим Dl. Радиус-вектор произвольной точки контура А обозначим r. Отрезок дуги АВ' обозначим. При вращении контура вокруг точки О с угловой скоростью линейная скорость точки А равна. Учитывая, что треугольник AB'B мал:

    , (1. 1)

где a - угол между вектором линейной скорости точки А и касательной AM к контуру в точке А. Проекция линейной скорости точек контура на направление вектора скорости света в этих точках

    . (1. 2)

Если контур неподвижен, то время обхода участка контура АВ=Dl двумя противоположными лучами одинаково; обозначим его dt. Тогда

    dt = Dl / c =. (1. 3)

При вращении контура с угловой скоростью кажущееся расстояние между точками А и В для встречно бегущих лучей изменяется. Для волны бегущей из точки А в точку В, т. е. в направлении, совпадающем с направлением вращения контура, расстояние удлиняется, так как за время dt точка В переместится на угол, перейдя в точку С.

Это удлинение пути для светового луча будет равно dt, поскольку в каждое мгновение луч направлен по касательной к контуру, по этой же касательной направлена проекция линейной скорости . Таким образом, отрезок пути, проходимый лучом, равен Dl + dt. Рассуждая аналогично, для встречно бегущего луча света будет иметь место кажущееся сокращение отрезка путиDl - dt

Считая скорость света инвариантной величиной, кажущиеся удлинения и сокращения путей для встречных лучей можно эквивалентно считать удлинениями и сокращениями отрезков времени, т. е.

    (1. 4)
    Подставляя выражения (1. 2)-(1. 3) для и dt, получаем
    (1. 5)
    Из рис 1. 1. следует
    ,
    где Ds - площадь сектора .

С точностью до бесконечно малых второго порядка площадь АОВ можно заменить на Ds. Тогда

    (1. 6)

Полное время распространения встречных лучей вдоль всего контура , (1. 7)

где суммирование ведётся по числу элементарных секторов, на которые разбит весь контур.

Таким образом, полное время, затрачиваемое лучом, бегущим по часовой стрелке при обходе всего вращающегося контура, больше чем полное время, затрачиваемое лучом, бегущим против часовой стрелки.

Разность времен и или относительное запаздывание встречных волн

    , (1. 8)
    где S - площадь всего контура.

Если относительное запаздывание встречных волн (1. 8) возникающее при вращении, выразить через разность фаз встречных волн, то она составит , (1. 9)

    где , .

Разность фаз является фазой Саньяка. Как видно, фаза Саньяка пропорциональна угловой скорости вращения контура.

Кинематическую теорию вихревого эффекта Саньяка ещё проще объяснить, рассматривая идеальный кольцевой оптический контур радиуса (рис 1. 2. ).

    Рис 1. 2. Эффект Саньяка в кольцевом оптическом контуре.

Луч света приходит в точку А и с помощью зеркал и расщепляется на два луча, один из которых распространяется по часовой стрелке в контуре, а другой - против часовой стрелки. С помощью этих же зеркал, после распространения в контуре лучи объединяются и направляются по одному, пути. При неподвижном контуре пути прохождения лучей одинаковы и равны , (1. 10)

, где с - скорость света, t - время прохождения периметра контура лучом. Оба луча приходят в точку А на расщепитель в фазе. Если контур вращается с постоянной угловой скоростьюW, то луч, распространяющийся по часовой стрелке, прежде чем попадет на перемещающийся расщепитель, пройдет путь

    (1. 11)

Это вызвано тем, что за время прохождения луча по замкнутому контуру расщепитель, находившийся ранее в точке А, уйдет в точку В. Для луча, распространяющегося против часовой стрелки, путь

    (1. 12)

Как видим, пути распространения противоположно бегущих лучей разные. Поскольку скорость света с величина постоянная, это эквивалентно разным временам прохождения лучей, распространяющихся в противоположных направлениях замкнутого вращающегося контура, и .

    Разность времен распространения
    (1. 13)
    В приближении первого порядка по можно записать
    (1. 14)

Что совпадает с выражением (1. 8), полученным выше, если считать - площадь контура. Эффект Саньяка может быть объяснен на основе понятия доплеровского сдвига частоты. Эффектом Доплера называется явление изменения частоты колебаний, излученных передатчиком и принимаемых приемником, наблюдающееся при взаимном относительном перемещении излучателя и приемника. При этом частота принятого колебания

    , (1. 15)

где f - частота излученного колебания, V - скорость перемещения передатчика, а знаки “+” или “-” соответствуют сближению или удалению передатчика относительно наблюдателя.

    Доплеровский частотный сдвиг
    пропорционален скорости перемещения излучателя.

Рассмотрим кольцевой оптический контур радиуса вращающийся с угловой скоростью W(рис. 1. 3. ). Аналогом перемещающегося излучателя в контуре является движущееся с линейной скоростьюотражающее зеркало. При вращении контура встречно бегущие лучи имеют различные длины волн вследствие доплеровского сдвига, накапливаемого при отражении волны от зеркала, смещающегося со скоростью . При вычислении фазы, накопленной в обоих плечах оптического контура, необходимо рассматривать вращающуюся систему в целом. Оба оптических пути тогда равны, но длины волн отличаются на доплеровский сдвиг . Тогда относительный фазовый сдвиг

    (1. 16)

Определим величину . Длина волны излучения, претерпевшего доплеровский сдвиг:

    Откуда

Подставляя полученное выражение в формулу для относительного фазового сдвига, получаем

    (1. 17)
    Фаза Саньяка
    (1. 18)

что полностью совпадает с выражением (1. 9), полученным при вычислении разности времен обхода лучом вращающегося контура.

Таким образом, мы рассмотрели два эквивалентных подхода к объяснению эффекта Саньяка. В первой интерпретации эффект проявляется как разность времен распространения встречно бегущих лучей во вращающемся контуре; во второй - как разность длин волн лучей в двух плечах контура одинаковой оптической длины. Измеряя электронным устройством разность фаз, можно получить информацию от угловой скорости вращения основания (объекта), на котором закреплен контур. Интегрируя измеренный сигнал, получают угол поворота основания (объекта). Эта информация затем используется для управления и стабилизации объектов. В зависимости от конструкции замкнутого оптического контура различают два типа оптических гироскопов. Первый тип, так называемый кольцевой лазерный гироскоп (КЛГ), в котором контур образован активной средой (смесью газов гелия и неона) и соответствующими зеркалами, образующими замкнутый путь (кольцевой лазер) . Второй тип—волоконный оптический гироскоп (ВОГ), в котором замкнутый контур образован многовитковой катушкой оптического волокна. Принципиальная схема ВОГ показана на рис. 1. 3.

Рис 1. 3. Принципиальная схема волоконно-оптического гироскопа.

Если контур ВОГ образовать нитью оптического волокна длиной L, намотанного на цилиндр радиуса R, то фаза Саньяка

    (1. 19)

где R - радиус витка контура; N - число витков; S -площадь витка контура. В соответствии с рис. 1. 3. , излучение источника подается на светоделитель и разделяется на два луча. Два луча, обошедшие контур в противоположных направлениях, рекомбинируют на светоделителе и смешиваются в фотодетекторе. Результирующее колебание можно записать в виде

    (1. 20)

где - амплитуды колебаний; - частота излучения; ; ; - начальная фаза колебания; - фаза Саньяка. Интенсивность излучения на фотодетекторе

    (1. 21)

Обозначив интенсивность излучения на выходе лазерного диода считая, что в волоконном контуре отсутствуют потери, и полагая, что светоделитель разделяет энергию точно поровну, имеем:

    (1. 22)
    Тогда выражение (1. 21) принимает вид:
    (1. 23)

Анализ выражения позволяет сделать вывод о низкой чувствительности прибора в данной конфигурации к малым угловым скоростям:

    (1. 24)

Для максимизации чувствительности к малым изменениям информативного параметра (фазы Саньяка) в волоконный контур необходимо поместить простой фазовый модулятор, дающий “невзаимный” фазовый сдвигp/2 между двумя противоположно бегущими лучами. Тогда интенсивность на фотодетекторе при малых угловых скоростях изменяется почти линейно:

    (1. 25)

а чувствительность ВОГ будет находиться на максимальном значении 0. 5. Различные способы введения “невзаимного” фазового сдвига будут рассмотрены ниже.

В конфигурации, приведенной на рис 1. 3. , выходной ток фотодетектора повторяет изменения интенсивности (мощности) входного излучения, т. е. :

    (1. 26)

где h- квантовая эффективность фотодетектора; q - заряд электрона; h - постоянная Планка; f - частота оптического излучения.

Если пренебречь постоянной составляющей выходного тока, то на выходе фотодетектора получим сигнал

    (1. 27)

При введении невзаимного фазового сдвига p/2 и для малых значений выходной ток:

    (1. 28)

Таким образом, значения выходного тока пропорциональны фазе Саньяка, которая в свою очередь пропорциональна угловой скорости вращения контураW.

    1. 2. Принцип взаимности и регистрация фазы в ВОГ

В типичных экспериментальных конструкциях гироскопов используется катушка с R = 100 мм при длине волокна L = 500 м . Обнаружение скорости вращения в 1 град/ч требует регистрации фазы с разрешением порядка 10-5рад. Это показано на рис. 1. 4. , где изображены значения фазового сдвига в функции угловой скорости вращения контура и величины LR приl = 0, 63 мкм . Оптические интерференционные системы фазовой регистрации с такой чувствительностью хорошо известны, однако в гироскопах существуют некоторые особые моменты, связанные с регистрацией фазы. Первый связан с тем фактом, что зачастую гироскоп работает с номинальной почти нулевой разностью хода, и для малых изменений в относительном значении фазы имеет место пренебрежимо малое изменение интенсивности на выходе.

Рис 1. 4. Фаза Саньяка в угловой скорости вращения для различных значений параметра LR.

Работа при смещении фазы в 90° максимизирует чувствительность, однако это вносит некоторую невзаимность для двух направлений распространения лучей в гироскопе, т. к. фаза луча, распространяющегося по часовой стрелке, отличается от фазы луча, распространяющегося против часовой стрелки, в отсутствии вращения.

Свойство взаимности - это второй важный момент в ВОГ. Фазовая невзаимность в ВОГ определяется дифференциальной разностью фаз встречно бегущих лучей. Любая фазовая невзаимность (разность фаз) для двух направлений дает изменения в показаниях гироскопа. Если невзаимность является функцией времени, то имеет место некоторый временной дрейф в показаниях гироскопа. Волокно длиной 500 м дает фазовую задержку порядка 1010рад. Таким образом, для того чтобы зарегистрировать скорость вращения 0, 05 град/ч, нужно, чтобы пути распространения противоположно бегущих лучей согласовывались с относительной точностью до 10-17 рад.

Следует, кроме того, отметить, что сам принцип действия волоконного оптического гироскопа основан на невзаимном свойстве распространения встречных волн во вращающейся системе отсчета (появление разности фазовых набегов двух лучей при вращении). Поэтому несомненна важность анализа невзаимных эффектов и устройств в ВОГ (по меньшей мере, хотя бы для определения точности прибора). Принцип взаимности хорошо иллюстрируется известной теоремой Лоренца для взаимных систем . Если характеризовать две электрод магнитные волны векторами, и , , где - вектор напряженности электрического поля, а - вектор напряженности магнитного поля, то принцип взаимности выполняется для систем, у которых

    (1. 29)
    где - антисимметричные тензоры магнитной и диэлектрической
    проницаемостей материальной среды соответственно.

Условием невзаимности является неравенство нулю приведенного выше соотношения. К средам, проявляющим невзаимность, относятся магнитно-гиротропные материалы (ферромагнетики): электрически гиротропные среды (диамагнетики), находящиеся под действием магнитного поля; прозрачные диэлектрики; среды, совершающие поступательное движение относительно любой системы координат, в которой задано электромагнитное поле; вращающиеся среды; канализирующие системы типа волноводов и световодов. Последние случаи представляют особый интерес, поскольку при вращении ВОГ появляется фазовая невзаимность, дающая фазовую разность Саньяка.

При вращательном движении среды условие невзаимности имеет вид (1. 30)

Наличие канализирующей среды в ВОГ (световода) приводит к появлению ряда невзаимных эффектов, приводящих к появлению “паразитной” разности фаз встречно бегущих лучей. Эта паразитная разность фаз существенно искажает “полезную” фазу Саньяка, увеличивает значение надежно регистрируемой фазы Саньяка (т. е. ухудшает чувствительность прибора). Кроме того паразитная разность фаз, обусловленная невзаимными эффектами, носит зачастую характер случайных флуктуаций.

Исключение случайных флуктуаций может потребовать длительного накопления (интегрирования) выходного сигнала ВОГ, с тем чтобы выделить полезную составляющую (как показано в [1] в некоторых экспериментальных установках высокочувствительных ВОГ время интегрирования доходит до минут и даже до десятков минут).

Скачен 1379 раз.

Скачать